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Abstract 
This paper considers the problem of estimating an autoregressive-moving average (ARMA) 

model when only ergodic and mixing assumptions can be made. The estimation procedure is 
based on the minimization of a sum of squared deviations about linear conditional expectations. 
It is shown that the estimator is strongly consistent and asymptotically normal. The results can 
be used to estimate weak linear representations of some nonlinear processes. Several examples 
of such linear representations are provided. Other potential areas of applications are inference 
for noncausal ARMA, aggregation and marginalization of linear processes. A numerical study is 
also presented. It appears that standard identification routines based on strong hypothesis on the 
innovation of ARMA models can be seriously misleading when these assumptions do not hold. 
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1. Introduction 

In the last 15 years, the time-series literature has been characterized by a growing 
interest in nonlinear models. A wide variety of formulations have been proposed and 
extensively studied (see e.g. Priestley (1988) or Tong (1990) for reviews on some re- 
cent work on nonlinear time-series analysis). Their usefulness in applied research has 
been demonstrated in numerous cases. However, they seem often complex to handle 
and linear models remain the most widely used by the practitioners. Ready-made pack- 
ages are available, however, they rely on strong assumptions on the noise processes 
(such as independence or martingale difference). These assumptions are typically not 
satisfied for linear representations of nonlinear processes. It is, therefore, interesting to 
investigate the features of the Box and Jenkins methodology in cases where the stan- 
dard strong hypothesis on the linear innovation do not hold. This paper is a first step 
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in this direction since we focus on the estimation problem of ARMA representations 
of univariate nonlinear processes. 

A well-known property of weak ARMA processes is that they can be viewed as 
L2 approximations of the Wold decomposition of regular stationary processes. Besides, 
several important classes of nonlinear models have been found to admit exact weak 
ARMA representations. One may ask why one needs to estimate the latter. There are 
at least three reasons. One is that they provide invaluable assistance in forecasting. 
Although not optimal in the L2 sense, the linear forecasts are easily obtained and do 
not rely on a complete specification of the dynamics. Second, a linear representation 
can be a helpful tool for model selection. Given the range of alternative nonlinear 
models, the selection of a particular class is often a difficult task and the compatibility 
of one particular candidate with the ARMA representation can be worthwhile noting. 
The third reason concerns model identification. Several nonlinear models (such as the 
GARCH) include a linear part, completed by a modelling of the dynamics of the 
linear innovation. In such cases the linear representation is typically used to identify 
the nonlinear part in a two-steps procedure. 

Another potential area of application of the results stated in the present paper con- 
cerns inference for noncausal ARMA processes, with non-Gaussian i.i.d. noise. These 
processes are well known to admit causal ARMA representations, however, such rep- 
resentations are generally weak ones. We are thankful to a referee who pointed out 
this application which we believe to be promising. 

Finally, other potentially fruitful applications can be found within the class of strong 
linear processes. Transformations commonly used in applied research, such as aggrega- 
tion, marginalization of vector time series, are well known to preserve linearity. How- 
ever, as will be seen later on, such transformations fail to preserve strong linearity. 
Therefore, applying standard time series techniques to data obtained from transformed 
strong linear processes is likely to be misleading. 

The estimation procedure developed here is based on the minimization of a sum 
of squared deviations about conditional linear expectations. This is closely related to 
the “conditional least-squares” method considered by Klimko and Nelson (1978), with 
strong innovations replaced by linear ones. The interpretation of linear conditional ex- 
pectation as an orthogonal projection on the Hilbert space generated by the linear past of 
the process motivates the method, which we can call “conditional linear least-squares”. 
Although considerable attention has been paid to the asymptotic properties of various 
estimators in ARMA models with strong innovations, little is known when the martin- 
gale difference assumption is relaxed. To our knowledge, the most general treatment 
is due to Dunsmuir and Hannan (1976) who proved consistency of estimators derived 
from a Gaussian likelihood (although Gaussianity was not assumed) in a vector frame- 
work, under weak assumptions on the noise process and based on a spectral analysis 
(see also Hannan, 1975). They also obtained asymptotic normality under a martingale 
difference assumption. In this paper we show that a mixing property (in addition to the 
existence of moments) is sufficient to obtain a consistent and asymptotically normally 
distributed estimator for the parameters of a weak ARh4A representation. 
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The paper is organized as follows. In Section 2 we provide some examples of non- 
linear processes admitting a linear representation which we are able to exhibit. Several 
other potential areas of applications derived from linear processes are also described. 
The asymptotic results are presented in Sections 3 and 4 while the proofs and several 
lemmas are developed in Section 5. In Section 6, the asymptotic variance matrix of 
our estimator is derived for particular examples and its estimation is discussed. Finally, 
the results of a simulation study and an application to a real data set are presented. 

2. Weak ARMA representations 

Some models usually encountered in the nonlinear time series literature are based 
on a (weak) linear representation of the observable process. This is the case for the 
GARCH-type models introduced by Engle (1982), in which the linear innovation is 
modelled as a martingale difference with a specific form for the conditional variance. 
The approach can be extended to a more general framework (see Francq and Zakoi’an, 
1995). The following are some less straightforward examples of nonlinear processes 
admitting ARMA representations. 

2.1. ARMA representations of nonlinear processes 

2. I. 1. A process with a deterministic dynamics 
Consider the following process, due to Moran and presented by Whittle (1963): let 

X0 be a random variable uniformly distributed in [0, 11, and, for t 2 1, let X, be the 
fractional part of 2X,-1. Easy calculations show that (X,) admits the AR( 1) represen- 
tation: X, = i + $1 + Ed, where (Ed) is a weak white noise (i.e. a zero mean and 
uncorrelated second-order stationary sequence). 

2.1.2. Bilinear processes 
Initially studied by Granger and Anderson (1978) and Subba Rao (1978), bilinear 

models have been found to be useful in many areas. Pham (1985) has shown that a 
wide variety of bilinear processes admit ARMA representations. By way of illustration 
consider the following bilinear equation 

‘d’t E Z, X, = qr + b&-l r/--2, (1) 

where (qt) is an i.i.d. N(0, 1) sequence. If b2 < 1 then (1) admits a unique nonantici- 
pative (i.e. measurable with respect to the a-field generated by {Q,: u<t}) stationary 
solution (see e.g. Gdgan, 1988). Straightforward algebra shows that this stationary 
solution (X,) is also a MA(3): 

VtEZ, Xf=Et+CEt-3, (2) 

where (Q) is a weak white noise. 
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2.1.3. Switching-regime models 
We consider a simple example of switching-regime Markov model (see, e.g., 

Hamilton (1994) for more details). Let (d,) be a stationary, irreducible and aperi- 
odic Markov chain with state space (0, l}. The stationary distribution is defined by 

~n(O)=P(d,=o) and n(l)= 1 - n(O)=P(d,= 1). 

Let (~0 be a sequence of i.i.d. centred variables with unit variance, which is supposed 
to be independent of (A,). Let (X,) be the stationary process defined by 

vt E z, x, = vr + (a + (b - U)d,)&l. (3) 

Let y(h) = Cov(X,,X,_h). We have 

E&)=0, y(O)= 1 +&c(O)+b%(l), 

y(l)=an(O)+6n(l) and y(h)=O, V’h>l. 

Therefore, when an(O) + b~( 1) # 0, (X,) admits the following MA( 1) representation: 

V’tEZ, X(=&r fC&1_I, (4) 

where c is a constant depending on a, b and a( 0): c = y( 0)/2y( 1 )- J( y( O)2/4y( 1 )* ) - 1, 
and where (Q) is a weak white noise with variance equal to y( 1)/c. 

2.1.4. Threshold models 
The class of threshold autoregressive (TAR) processes has been introduced by Tong 

and Lim (1980). In general it seems difficult to exhibit, or even prove, the existence of 
ARMA representations for the TAR processes. A particular case of threshold process, 
introduced by GouriCroux and Monfort (1992), is given by 

Yt = i: ajl,4,(K--l) + 5 bjlA,(K-I 14, 
j=I j=I 

where (Aj, j= l,...,J) is a partition of R d, the @j’s are d-dimensional vectors, the 
D/‘s are positive-definite matrices and (u~)~~z is a sequence of i.i.d. random vectors 
with zero mean and covariance matrix equal to identity. Under an assumption on 
the distribution of YO, (Y,) can be shown to be strictly stationary and ergodic, and 
it admits an ARMA(J - 1, J - 1) representation which can be obtained in closed 
form. 

2.2. Weak representations derived from strong linear processes 

The methods developed in this paper are also useful to deal with incompletely ob- 
served strong linear processes. There are at least three situations where an incomplete 
data problem can arise. First, the observations can be obtained with a time unit larger 
than that of the underlying process. Second, the observed process can result from the 
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linear combination of several independent unobservable processes. Finally, there are 
situations where only one or several components of a multivariate time series can be 
observable. 

2.2.1. Temporal aggregation 
In a large number of economic applications, some observations are missing at certain 

frequencies. A question of particular importance is whether an ARMA process at one 
frequency, say daily, is consistent with some ARMA process at another frequency, say 
weekly. The so-called temporal-aggregation properties of ARMA models have been 
studied extensively in the econometric literature (see, e.g., Amemiya and Wu, 1972; 
Palm and Nijman, 1984; Nijman and Palm, 1990). 

Consider an ARMA(p,q) process (X,),,z and define (zl)tE~ = (Xmt)tEz, where m is 
any positive integer. Then (J?t)tE~ follows an ARMA(p, p + [(q - p)/m]). However, 
the ARMA model is in general a weak one, i.e. the innovation process is not i.i.d., 
nor even a martingale difference. It is easily seen, for instance, by considering the 
following MA(2) process: 

bft E z, x = qt - el~t-l - e2qr-2, 

where 8182 # 0 and (nt) is an i.i.d. white noise with E$ # 0. Then fl =X& is solution 
of an MA( 1) equation of the form: & = E, - 0 0 f ,, where 10s 1-e 1. By inverting the E _ 
MA(l) equation, one can obtain et as a linear combination of ~2~ and its past values. 
Hence, it is easily shown that, for instance, 

E(w:_,)=E~: (e, - e,) + +J$ [(e, - e2)3 - e:i 
0 I 

Therefore, .st is generally not a martingale difference. 

2.2.2. Contemporaneous aggregation and marginalization 
In econometrics, for instance, it is often the case that the series of interest results 

from the aggregation of several (maybe unobserved) other series. Consider the simple 
case of aggregation of two independent strong MA( 1) processes: 

_y t =x(‘) +x(2) 
t t 2 

where X,(i’ = #) - &qj’),, i = 1,2. 

81 # &; the #j’s are two independent i.i.d. white noise with third moments not equal 
to zero. Straightforward calculations show that X, is also an MA( 1) process. However, 
from computations similar to those of the last example, we show that it is not a strong 
one. The result can obviously be extended to more general ARMA processes. 

A similar problem is that of the marginalization of a strong ARMA vector process. 
The components are also ARMA processes but they are not strong ones in general. 

All these examples have important practical meanings and emphasize the need for 
estimating weak ARMA representations. 
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3. Consistency of the least-squares estimator 

Let (Xr)rE~ be a second-order stationary process such that, for all t E Z, 

where (Ed) is a sequence of uncorrelated random variables defined on some probability 
space (12, &, P) with zero mean and common variance cr2 > 0, and where the polyno- 
mials 4(z) = 1 + atz + . . . + u,zp and ll/(z) = 1 + btz + . . . + bqz4 have all their zeros 
outside the unit disk and have no zero in common. Without loss of generality, assume 
that up and b, are not both equal to zero (by convention ua = bo = 1). Process (Q) can 
be interpreted as the linear innovation of (X,), i.e. 

Et =xt - -wt/Hd~ - 1 I), 

where Hx(t - 1) is the Hilbert space generated by (X,; s < t). In addition, assume that 
(X,) is a strictly stationary and ergodic sequence. 

The parameter 

&:=(a,,..., +hY.,bq)‘, 

belongs to the parameter space 

O:={e=(e,,...,e,,e,+,,...,s,+,)‘; ~e(~)=l+~l~+~~~+&,zP and 

$0(z) = 1 + Bp+lZ + . . . + Op+,zq have all their zeros outside the unit disk}. 

For all 8 E 0, let (c(0)) be the second-order stationary process (see, e.g., Brockwell 
and Davis, 199 1, Chap. 3) for the existence and the uniqueness of such a process) 
defined as the solution of 

&,(6I)=Xt + 5 Q&-i - 5 Bp+i&t_i(B), Vt E Z. (6) 
i=l i=l 

Note that s,(&) = Et a.s. ‘dt E Z. The assumption on the MA polynomial $0 implies 
that there exists a sequence of constants (ci(0)) such that 

l$ Ici(e)l <O” 

and 

&t(G)=Xt + Eci(0)x,-i, Vt E Z. 
i=l 

Note that for all 0 E 0, at(Q) belongs to L2(Q,&,P), that 
sequence (from (7)) and that st(.) is a continuous function. 

(7) 

(.st(B))tEz is an ergodic 
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Given a realization of length n, XI ,X2, . . . , X,,, E,(O) can be approximated, for 0 < t <n, 
by e*(0) defined recursively by 

e,(e) =Xr + fI: e&t-i - 5 0,+$,-i(0), (8) 
i=l i=l 

where the unknown starting values are set to zero: es( 0) = e_ 1 (0) = . . = e++, (0) = & 
=x1 =. . . =Xp+l =o. 

Let 6 be a strictly positive constant chosen so that the true parameter 80 belongs to 
the compact set 

OJ:={em , pfq. the zeros of polynomials &(z) and I/Q(Z) have 

moduli > 1 + 6). 

The random variable 8, is called least-squares estimator if it satisfies, almost surely, 

(9) 

where 

To prove the consistency and asymptotic normality of the least-squares estimator, it 
will be convenient to consider the functions 

where (cl(e)) is given by (7). The first main result obtained in this paper is the 
following theorem. 

Theorem 1. Let (Xt)rE~ be a strictly stationary and ergodic process belonging to L2 
and satisfying (5). Let (8,) be a sequence of least-squares estimators dejned by (9). 
Suppose 00 E @a. Then 

A 
en + e. a.s. as n+c0. 

4. Asymptotic normality 

Let 9’ _-oi, and $$ be the o-fields generated by {XU: U< t} and {XU: ~3 t + k}, re- 
spectively. The strong mixing coefficients (ax(k))k,~ * of the stationary process (X,),,z 
are defined by 

KY(k) = sup IP(A n B) - P(A)P(B)I. 
AEP’ -_J E q-“R 

Pham (1986) has shown that, for a wide class of bilinear processes, the strong mix- 
ing coefficient tends to zero exponentially fast. The same property is very easy to 
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prove for the switching-regime model (3) (X, is a function of (Q, ~__i, A,) and the 
strong mixing coefficients of the process (qt,qr_i, A,& tend to zero exponentially 
fast). 

For any BE@~, let $0,(8)=(&O,(O) , . . . , &O,(B))‘. We consider the following 
matrices 

the existence of which will be established in the sequel. The second main result of the 
paper concerns the limiting distribution of I!?,,. 

Theorem 2. Let the assumptions of Theorem 1 be satisjed. In addition, suppose that 
(X,)fE~ satisfies /Z/X, 14f2V <cc and 

kg0 bxcw2+“’ <m, (10) 

for some v >O. Then 

has a limiting centred normal distribution with covariance matrix J-‘IJ-‘. 

Remark. The nondegeneracy of the limiting distribution requires that matrix 1 is posi- 
tive definite. This is easily shown to be true, for example, in the case where the process 
(Q) is a martingale difference. In particular cases, the property can be checked directly 
using a characterization of I given in the following section. It requires, however, the 
computation of expectations of some products of present and past values of X,. 

5. Lemmas and proofs 

Proof of Theorem 1. For general vector-valued processes, the proof of consistency 
has been given in Dunsmuir and Hannan (1976) using spectral analysis. We use a 
different approach. However, for the sake of brevity we will only sketch the proof. 
Details are provided in the original version of this paper, which is available on 
request. 

The proof of consistency is mainly based on the ergodic theorem applied to the 
process S&t)= inf~Ev,(e*)nos~(0), where V,(O*) is the open sphere with centre 8* 
and radius l/m. It also uses a uniform domination result on the coefficients c;(O) on 0~ 
and an asymptotic identifiability result due to the orthogonal&y properties of the linear 
innovation a,(&). Finally, it requires to show that et(O) - et(O) converges uniformly 
to zero (a.s.) as t goes to infinity. 

The proof of Theorem 2 will be divided into several steps. 
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Lemma 1. For any 8EO andany m~{l,..., p+q), there exist absolutely summable 
sequences (ci(e))i, 1 and (c+,(e))i, 1 such that 

et(e) =x, + fJ Ci(e)&i 
i=l 

Moreover, there exist p E [0, 1[ 

and $&(e) = 5 c4e)4-i. 
m i=l 

and K E [0, co[ such that, for all i > 1, 

sup jci(e)l <Kp’ and sup Ici,,(e>l bKp’. 
0E@‘j e E 0, 

(11) 

(12) 

Proof. To prove the first inequality in (12) we use the fact that the coefficients of 
Taylor series for l/&(z) (which is absolutely convergent for Iz( < 1 + S) decay at an 
exponential rate uniformly on 06. For more details see the original version of this 
paper, which is available on request. 

To prove (11) and the second inequality in (12), first note that they are obvious for 
q = 0. Otherwise, partition 8 in 0 = (B(l)‘, fI(2)‘)1, where 

e(l)’ = (4,. ,e,) and ec2)’ = (ep+l,. . . ,e,+,). 

Let y,(e(r)) =X,+c,“_, fI$_i = st(e)+x;=r r3i+pet_-i(0)r for all eE 0. Let (&i(P)))ieru 

be the absolutely summable sequence such that &t(e) = Era ?i(e(2))K-i(e(‘)). First, 
consider the case 1 d m < p. We have, with probability one 

&t(ej = E Ei(e(2))&Yt_i(O(1)) = 2 c”i(ec2))&_i_, 
m i=O m i=O 

(the derivation under the sign sum is valid since, with probability 
derivatives is uniformly absolutely summable in a neighbourhood 

one, the series of the 
of 0). Now, consider 

the case p + 1 d m < p + q. Let vi, 1 <i < m, denote the inverses of the distinct zeros 
of $Q. Straightforward algebra shows that Ei(e(2)) can be expressed as a polynomial 
of the qj’s. Therefore, Ci(e(2)) is differentiable with respect to em. Similarly, it can 
be shown that ( I(~/~e,)~i(e(2))~)~ is also bounded by a sequence decaying at an ex- 
ponential rate uniformly on a neighbourhood of 0, l3E 0. Therefore, we have with 
probability one 

$&e) = ,go &&(S(2))Yt_i(O(‘)), 
m m 

which states (11) with 

ci,,(e) = $&(S(‘)) 5 ~Ei_j(H’2’)0j (by convention &Ci(e(2)) = 0 
m j=1 aem 

for i<O). 0 
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Lemma 2. For any 8 E 0 and any m E { 1,. . . , p + q}, the random variable 

exists and belongs to L2. 

Proof. Since, EXP <co, CE, Ic~(e)l <cc and CF, IciF(O)) <CO, by the Cauchy crite- 
rion, it can be shown that E&8) < KI and E(a/cW,)~,(8))~ < cx). The Cauchy-Schwarz 
inequality shows that (a/%,)$ = 2~,(8)(8/M,)~,(0) belongs to L*. The conclusion 
follows. 0 

Lemma 3. Let the assumptions of Theorem 2 be satisfied. For all 0 E 06, the matrix 

I($)= ,‘lt Var (&AOn(8)) 

exists. 

Proof. Let (8/a@,(O) = ((13/83,)&,(O), . . . , (W~,+,)E,UW and Y, = 2dWVWdO 
We have 

For (Z,m)E{l,...,p+q}* and kE;Z, let 

c(k) = cov( Ydl), Y+k(m)>, 

where Y,(Z) denotes the Zth element of Yr. 
Let 

M( j - i, i’ + k - i, j’ + k - i) = EX~_iX,_jX~_i’_kXt-j’__k 

First, suppose that kB0. From the dominated convergence theorem we have 

[c(k)1 = 4 c c c Ccov(Ci(e)x,-iCj,l(e)x,_i, cil(e)x,-il-kcj,,,(e)x,-j~-k) 
i=O j=Oi'=Oj'=O 

= 4 i jTj, C,(e)Cj,t(e)Ci,(e)Cj',m(8)M( j - i, i’ + k - i, j’ + k - i) 
.1 , 

G 4(g1 + 92 + g3 + g4 + gs), 
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where 

91 = C E Ici(e)cj,,(B)ci~(B)cj~,,(B)M(j - i,i’ + k - i,j’ + k - i)l, 
izk/2 j i’ j’=O 3 , 

g2 = C E Ici(e)cj,r(e)cil(e)cj,,,(e)M(j - i,i’ + k - i, j’ + k - i)l, 
i’>k/2 i.j,j’=O 

93 = c E Ici(e)cj,r(8)cil(e)cjl,m(e)M( j - i, i’ + k - i, j’ + k - i)l, 
j>k/2 i i’ j’=O 3 > 

% = c 2 Ici(@cj,r(8)st(8)cj~,,(@4(j - i,i’ + k - i, j’ + k - i)l, 
j’ >k/2 i i’ j=O I > 

gs = c Ici(e)cj,,(e)cil(e)cj/,~(e)M(j-i,i’+k-i,j’+k-i)l. 
i~k/2,j~k/2,i’Qk/2,j1~k/2 

The Cauchy-Schwarz inequality implies that 

IM( j - i, i’ + k - i, j’ + k - i)l 6 ~E(~~-i~~-j)2E(&_i~-~&-j’-k)2 

< EX;=M<m. 

Therefore, using Lemma 1, we have 

i>k/2 

f M2pk12, 

for some positive constants A41 and M2. The same inequality holds for 92, gs and 94. 
Note that E 1X$& 12+” <co for some v>O. The Davydov inequality (Davydov, 1968) 
implies that, for 0 <i, j, i’, j’ <k/2, there exist positive constants C and Ct such that 

M(j-i,i’+k-i,j’+k-i) 

~CII~-iXt-j(l2+vlIXt-i’-kXt-j’-kll2+v 

x (mx(min{k + i’ - j, k + j’ - j, k + i’ - i, k + j’ - i}))y’(2+v) 

Therefore, there exists a positive constant A43 such that 
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Thus, for k 2 0, we have 

A similar inequality holds for k d 0. Therefore (10) implies that 

,=z k(k)1 <oo, 

Then the dominated convergence theorem gives 

Lemma 4. Under the assumptions of Theorem 2 the random vector J;;(a/%l)Q,,(&) 
has a limiting normal distribution with mean 0 and covariance matrix I(&). 

Proof. It is easy to show that fi(a/aO)(Qn(&) - O,(&)) converges in probability 
to zero. Therefore, fi(a/aO)Qn(&,) and ,/%(a/a0)0,(0a) have the same asymptotic 
distribution. Note that &,(a/a@c~(&) = 2&,s~(a/a@s~(&) = 0, since (a/a&(@ be- 
longs to H,(t - 1). Therefore, &(a/a@O,,(&,) IS centred. Maintain the notations of 

the proof of Lemma 3. For any positive integer r, we have 

where 

z,r = 2ut,r + 2 v&r, 

ul,r = E Ci(eO)x,-i~X,-j(C,,l(BO),. . .,Cj,p+g(dO))', 
i=r+l j=l 

vt,r = $2 ci(~O)xI-i E 4-j(Cj,l(oO), . ..,Cj,p+q(eO))', 
i=O j=r+l 

and 

y~,,=2~Ci(BO)X,-i~X,-j(Cj,*(BO),...,Cj,,+,(eO))'. 
i=O j=l 

First note that Y,,, is a function of a finite number of values of the process (X,). 
Therefore, the stationary process ( Yt,l)l E z satisfies a mixing property of the form (10). 
The central limit theorem for strongly mixing processes (Ibragimov, 1962) implies that 

(I/fi)C:=,(Yt,~ - =%Yv) h as a limiting JV(O,~~) distribution. Moreover, standard 
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calculations show that jr +I as Y + co. Now we will show that E(& C:=,(Z,, - 

GAlZ,J,($ c:=,(Zt,Y - &,Zt,,)Y converges to 0 uniformly in n as r -+ co. The 
conclusion will follow from a straightforward adaptation of a result given by Anderson 
(Corollary 7.7.1, 1971, p. 426). 

For mE{l,...,p+q} we have 

where 

G.(h) = cov(Ut,r(m>, Ut+h,r(m)> 

= E fJ E E Ci(e)Ci,(8)Cj,,(8)Cj,,,(S)COV(X,_i~_j,~+h_i/~+h_j/). 
i=r+l j=l i’=r+l j'=l 

First, suppose that h 30. Using the Cauchy-Schwarz inequality and the Davydov 
inequality, we show that there exists a positive constant C such that 

lcAh)l 6 Mi=zi ki(@\$ lcj,m(H)li,$+, Ici’(e>l jg, lcj’Ae>l GcP’ 

and, for r < [h]/2, 

lcrW>l d C C CC Ici(e)c,l(e)cj,,(e>Cj/,~(e>( 
r<i’<[h/Z]O<j’<[h/2] i j 

+i,,%,2, jg, Is(e)s~(e)cj,,(e)cj~,,(e)lICov(X,-iXt-j,Xt+h-i’Xt+h-i’)l 
> , 

+ C C ICi(~)Ci~(e)cj,,(e)Cj~,,(e)(ICov(X,-iX,-j,Xt+h-;‘Xt+h-j~)I 
j’ > [h/2] i, j. i’ 

The same inequality holds for h < 0. Therefore, there exists a constant Ct such that 

,=gm lcr(h)l= C Icr(h)I + C lcr(h>l GCtrP’ + CIP’ 
Ihl$2r+l lh/32(r+l) 

+ ClP’C (w(k>> 
v/(2+v) -to 

k 
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as r + 00. Thus, 

sup var 
n 

(-$$ Q,.(m)) +O 

as r 4 00. Similarly, it can be shown that 

sup var 
n 

(52 K&r)) -+ 0 

as r + 00. Then 

as r + cc and the proof is complete. 0 

Lemma 5. Almost surely the matrix J exists and is strictly positive dejinite. 

Proof. It is easy to show that I(a2/80ia0j)s,(0) - (~2/~0~~~~)et(~)~ + 0 almost surely, 
as t + KI. Therefore, (a2/‘80i80j)0n(8s) and (a2/80ia0j)Qn(0a) have almost surely the 
same limit (when existing). As in the proof of Lemma 1, it can be shown 
that 

where CT”=, Ic,,j(@l COO. Therefore, (82/8iatJj)s,(&,) belongs to L2. Then we 
have 

+ E$,~t(eO)~~t(eO) . 
2 J 1 

Since (a2/%$33j)s,(0) belongs to Hx(t - l), we have E&t(a2/d&aBj)&t(&,) = 0. There- 
fore, J is the covariance matrix of fi(a/a0)s,(&). If it is not strictly positive definite 
then there exist real constants p,,,, not all equal to zero, such that CzL; pm &st( 0s) = 

C:,(C;‘=: Bmcl,m)XI-/ = 0. Th’ is is in contradiction with the assumption that the vari- 
ance c2 of the linear innovations is not equal to zero. 0 

Proof of Theorem 2. Using a standard technique of Taylor expansion around 80, we 
obtain 
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where the (~)n*,~,~‘s are between 8, and 0s. Doing again a Taylor expansion we obtain 

almost surely as n -+ cc. From Lemmas 5 and 4, we obtain that ~‘$8, - 00) has a 
limiting normal distribution with mean 0 and covariance matrix J-‘IJ-‘. 0 

6. Examples and numerical illustration 

We first discuss a number of examples for which the asymptotic variance of the 
estimator can be given in closed form. 

6.1. Covariance matrix calculations 

Example 1 (noncausal AR( 1)). Consider the process: X, = - CJE, 4-‘r/,+j, where 

Ml>1 and (rt> IS a non-Gaussian i.i.d. white noise. Then (X,) admits the follow- 
ing noncausal AR( 1) representation: X, = &X-i + qt. Moreover, it is well known that 
the following AR( 1) representation holds: X, = (l/$)X-i + et, where (.Q) is a weak 
white noise. If, for instance, E($ ) # 0, then it is easily checked that the (st ) process 
is not a martingale difference. Now accounting for the weak AR( 1) representation of 
(X,), the least-squares estimator of parameter l/4 can be considered. According to 
Theorem 2, some moment calculations show that the asymptotic variance J-‘ZJ-’ is 
equal to ($* - 1)/4*. The same asymptotic variance is obtained by assuming (cl) is 
i.i.d.. This is not surprising since the least-squares estimator of l/4 has the same asymp- 
totic distribution as the first-order empirical autocorrelation of (X,). Further, the Bartlett 
formula applies regardless of the hypothesis on the white noise (weak or strong). There- 
fore, there is no loss of asymptotic efficiency due to the dependence structure of (ct). 
The next example shows that it is not always the case. 

Example 2 (switching-regime model). In Section 2, we exhibited an MA( 1) represen- 
tation for a switching-regime Markov model. For simplicity, assume that qr N ./lr(O,l), 
b= - aG] - l,O] and p := P(d,= l/d,_, =O)=P(d,=O/d,_l = l)~]O,l[. In this 
case (X,) is a weak white noise. Therefore, (X,) satisfies the following weak MA( 1) 
representation: X, = at + cst- 1, where c = 0 and (E,) = (y) is a weak white noise with 
variance E&f = 1 + a*. It follows from Theorem 2 and standard computations involving 
moments of X,, that the asymptotic variance is equal to 

J-,IJ_l = 1 + 2a2(1 - 2P) + a2 
(1 +a2)* p(1 + a2j2’ 

(13) 

It should be noted that the asymptotic covariance matrix would equal 1 if the MA( 1) 
representation was a strong one. Therefore, a huge discrepancy between the asymptotic 
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precisions of the strong and weak representations can hold (for p close to zero). 
A more astonishing output of this computation is that the weak representation can be 
more easily estimated (asymptotically) than the strong one: choosing p close to 1 in 
(13) shows that the asymptotic variance can be less than 1. 

Example 3 (bilinear). Consider the following bilinear equation: 

Vt EZ, x, = rjt + bqt-S-2, (14) 

where (rt) is an i.i.d. .,V(O, 1) sequence, and where b is a real constant such that 
3b4 < 1. Under the previous assumptions on the coefficient b and the sequence (rt), it 
can be shown that (14) admits a unique stationary nonanticipative solution X = (X,), E z 
(see, e.g., Guegan, 1981). Moreover, X admits fourth-order moments and it is a weak 
white noise. 

Now, suppose that the statistician is mistaking it for an AR( 1) process. Then he will 
estimate the following representation: 

X,=Et$aX_,, WEZ, (15) 

where a = 0 is the true value. The least-squares estimator is given by 

Since the nonanticipative stationary solution of (14) is ergodic, we are able to check 
directly in this case the consistency stated in Theorem 1: 

E&S - I Y(l) Ci+-=--roOaa. 
EX; Y(O) 

Straightforward calculations of the matrices involved in Theorem 2 show that the 
asymptotic variance of ,,I% is equal to 1 + 4b2 - 2b4. As a comparison, note that 
the value of lim,,, var($%) is equal to 1 for a strong white noise. Once again, 
e.g., for IblaO.55, the asymptotic variance of fiti is more than twice as big as the 
corresponding asymptotic variance in the case of a strong white noise. Therefore, it is 
seen that, using standard confidence intervals, the statistician is likely to mistake the 
hypothesis that a # 0 as being true. 

(16) 

6.2. Covariance matrix estimation 

It is clear from the previous examples that the asymptotic covariance matrix J-‘IJ-’ 
of ~‘$6, - 0,) can be very different from the one obtained for a strong ARMA model. 
We now consider estimation of this matrix. 

As in some of the previous examples the least-squares estimator can sometimes be 
approximated by a differentiable function of a finite number of empirical autocovari- 
antes: 

& = g(%O), y^( 1) ,...,x~))+OP(l), 
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where g is continuously differentiable in a neighbourhood of (y(O), y( l), . . . , y(m)) 
and op( 1) denotes a sequence of random vectors which converges in probability to 
zero. Under the assumptions of Theorem 2 the vector ,/&((y^(O), f(l), . . . ,f((m))’ - 
(y(O), y( 1 ), . . . , y(m))‘) is asymptotically normally distributed with zero mean and co- 
variance matrix C defined by 

C(i + 1,j + l)= ,‘il ncov(~(i),jQ))= E oi,Jk) for (i,j)E{O, l,...,m}*, 
k=--03 

where ai,j(k) = cov(~~~~_i,~~_k~~_k_j). Then the asymptotic covariance matrix of 
fi&, can be expressed as a function of g and C, namely DCD’, where D is the 
matrix of the partial derivatives of g evaluated at (y(O), y( l), . . . , y(m)). Therefore, a 
strongly consistent estimator of D is obtained by plugging the sample autocovariances 
into the expression of D. Finally, a consistent estimator of J-‘ZJ-’ is obtained from 
a consistent estimator ,JZ of Z. 

For example, consider the AR( 1) case. We have 

(j =&_9(1) ; op(l) D= 
n 

’ 
Iv) ’ 

It remains to define a consistent estimator of C. For linear processes, C can be 
derived from the Bartlett formula. In this case, Robinson (1977), Melard et al. (1991) 
have proposed methods to estimate Z in a consistent way. For nonlinear processes, the 
fourth-order moments ai,j(k) involved in the expression of C can be approximated by 

1 n-i-k 

ti,j(k) = ; c (X,&i - f(i))(Xt-kXt-k_j - f(j)) for i <j and 0 d k <n - j. 
f=l 

The t,,j(k)‘s are defined similarly in the cases i >j and --12 + i < k <O. Consider the 
smoothed empirical estimator of C defined by 

i(i+ l,j+ l)= C 
Ikl <ah 

o(kb )& (k) n l,J 5 

where (b,)nEN* is a sequence of real numbers such that b, + 0 and fib, ----) 00 as 
n--f M, the function o : R -+ R is bounded, nonnegative definite with compact support 
[-a, a], continuous at the origin with o(O) = 1 and satisfies 

bn _,E,, IMibn)I =0(l). 

For the applications given in this paper we have chosen 6, = n-1/4 and o(x) = max{O, 1 
-Ix]}. Berlinet and F rancq (1994) have shown that, under the assumption of Theorem 2 
and the additional assumption that EX8+4y coo, the estimator J? converges in mean 
square to C and is a nonnegative definite matrix. Therefore, we obtain an estimator of 
J-‘ZJ-’ which converges in probability. 
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Next, we briefly discuss estimation of matrices I and J in the general case. In the 
proof of Theorem 2, the following expressions were obtained: 

and 

J = 2E . 
Now, given a particular invertible ARMA model which we aim to estimate, the expan- 
sions of ct and its derivatives as linear combinations of the present and past values of 
X, can be used. For example, in the MA( 1) case, straightforward computations provide 

while matrix J can be easily expressed in terms of the autocovariance function of X,. 
Then an estimator of matrices I and J can be obtained by plugging suitably weighted 
(as in the previous example for 2) fourth-order empirical moments of the observed 
process into the expansions. The consistency of such estimators, however, is an issue 
for future researches. 

6.3. Numerical illustrations 

We consider two numerical illustrations of the estimation procedure. The first one 
is based on simulated data, while the second one uses real data. 

We carried out simulations for all three examples presented in 6.1, which confirm the 
theoretical results. For sake of brevity, we only present the bilinear case. We generated 
1000 independent trajectories of size 500 of the bilinear process (14), with b =OS, 
using the NAG Fortran workstation library. For each trajectory, an AR( 1) is fitted using 
the NAG routine G13AFF. This routine uses a least-squares procedure incorporating 
backforecasting. As expected, the estimates hence obtained are very close to those 
given by (16) (i.e., without backforecasting). Over the 1000 simulations, Li varies from 
-0.21 to 0.23. The observed mean of the 1000 estimates of a^ is -0.002 (while the true 
value of the parameter is 0). The observed standard deviation of the 1000 estimates 
of a^ is 0.06 (the asymptotic theoretical distribution gives Jm = 0.0612). The 
NAG routine also provides an estimate of the standard deviation rra := dm. 
However, the consistency of the NAG routine estimator requires assumptions (see e.g. 
Brockwell and Davis, 1991, p. 259) which are not satisfied by the simulated process 
(14). Fig. 1 shows that the estimates of on are generally very close to 1 (which is 
the value of a, for a strong white noise), whereas the true value is crz = 1.875. This 
can lead to a serious misspecification of the time-series model. Let us test the null 
hypothesis Ho: “X is a weak white noise”. We reject Ho when the absolute value 
of a^ is greater than 1.96 times the estimated standard deviation of a^. If the standard 
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Fig 

minimal observed maximal observed 
method observed value mean observed value standard deviation 

standard procedure 
for strong ARMA 0.95 1.00 1.04 0.007 
(NAG routine) 

procedure adapted 
for ARMA representations 0.69 1.58 a.77 0.62 
of non linear processes 

1. Comparison between estimates of uz := Var,(J;;a^) obtained with the standard method and those 
obtained with a method adapted to mixing non linear processes (the true value of 0: is 1.875). 

deviation is accurately estimated then the error of the first kind is approximately 5%. 
Using the standard method given by the NAG routine, we get a rejection frequency of 
Ho of 14,1% for 1000 trajectories, which is too high. 

Our application on real data concerns the well-known data set of Wolfer sunspot 
numbers ranging from 1770 to 1869. Various parametric time series have been proposed 
to fit these data; see Tong (1990) for an extensive review. For the ARMA modelling, 
the AR(2) model is generally selected (see, e.g., Box and Jenkins, 1970). The NAG 
routine G 13AFF gives 

c - 1.42X_1 + O.73X_2 =F,, (17) 

where I; =X, - 47.011, t = 1,. . . ,100 denote the mean-corrected series. The standard 
deviations corresponding to the two parameters are both equal to 0.07. They are cal- 
culated under the assumption that the linear innovations Ed are independent. However, 
many studies have shown that this assumption can be seriously questioned. The esti- 
mation procedure developed in this paper provides the following fitted model: 

x - 1.4I;_, + 0.7x-z = Et, (18) 

where the estimated standard deviations are now equal to 0.2. Therefore, although in 
this case the AR(2) model is not invalidated, it seems that the standard analysis is too 
optimistic about the precision of the estimator. Finally, the fitted linear model could 
serve as a benchmark for selecting a particular nonlinear model compatible with the 
AR(2) representation. 

7. Conclusions 

In this paper we gave theoretical results aimed to justify the common practice of 
fitting ARMA models to possibly nonlinear data sets. Replacing the usual implicit 
strong assumptions on the noise process by ergodicity and mixing modifies the asymp- 
totic results. Although the estimator remains consistent and asymptotically normal, 
the asymptotic variance is likely to be affected by the dependence structure imposed 
on the (linear) innovation process. The empirical study proposed in this paper shows 
that the modification can be dramatic. Standard identification routines based on strong 
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hypothesis on the innovation of ARMA models can therefore lead to serious misspeci- 
fication when these assumptions do not hold: they will result in inappropriate parameter 
standard errors, and these will typically be too small. 
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